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1 Wave Particle Duality and the Wavefunction

Double slit experiment implies wave-particle duality, electrons have de Broglie wavelength given by

λ = h/p. (1)

Electrons behaving like a wave must have a wavefunction Ψ(r, t), we can localise a particle by
adding multiple waves with different k, but this produces a spread in momentum p = ℏk. This is
the Heisenberg Uncertainty Principle,

∆x∆p ≥ ℏ/2. (2)

Wavefunction is complex, probability must be real,∫
P (x, t)dx =

∫
Ψ∗(r, t)Ψ(r, t)dx = 1, (3)

by normalisation.

Note that we can determine the dimension of the normalisation constant by ensuring that (3) is
dimensionless.

2 Operators and Expectation Values

The expectation value is the average value of an operator. All measurable quantities have an
operator,

x̂ = x (4)

p̂x = −iℏ ∂
∂x

(5)

Ĥ =
p̂2

2m
+ V (x) (6)

Ê = iℏ
∂

∂t
(7)

For any such quantity, the associated expectation value is given by

⟨Q⟩ = ⟨Ψ|Q̂Ψ⟩, (8)

as ⟨Q⟩ is real, Q̂ must be Hermitian.

Note that the expectation value is not the most probable value, which is instead found when the
probability has its maximum value (at the turning point).
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3 Uncertainty

Some operators that don’t represent observable quantities are not Hermitian, such operators don’t
commute.

Ehrenfest’s theorem states that Newton’s laws are exactly satisfied by the expectation values of the
corresponding operators in quantum mechanics.

4 The Schrödinger equation

4.1 Time Dependent Schrödinger Equation

−ℏ2

2m

∂2Ψ(x, t)

∂x2
+ V (x, t)Ψ(x, t) = iℏ

∂

∂t
Ψ(x, t) (9)

This simplifies to the time independent equation if the potential doesn’t depend on time, as the
wavefunction is separable

Ψ(x, t) = ψ(x)T (t). (10)

We can show that
T (t) = e−iEt/ℏ. (11)

4.2 Time Independent Schrödinger Equation

−ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x). (12)

This is an eigenvalue equation,
Ĥ(x)ψE(x) = EψE(x), (13)

the general solution to the time dependent Schrödinger equation is the weighted sum of each
separate wavefunction multiplied by the corresponding T (t).

Note, Hermitian operators yield real eigenvalues, and orthogonal eigenfunctions.

5 Eigenfunctions and Superposition

The general solution to the TISE is an arbitrary linear superposition of different stationary states,

|Ψ⟩ =
∑
n

cn|ψn⟩, (14)

if we measure the energy of the system, the superposition collapses to just one of these eigenstates.

5



|cn|2 gives the probability of measuring the system in the state |ψn⟩.

The probability of measuring a particular state oscillates over time thanks to the T (t) term above.
Superposed states are not stationary states.

6 Transitions

Wavefunctions which are a superposition of energy eigenstates give expectation values which depend
on time, pure energy eigenstates do not.

7 Eigenfunctions of Various Potentials

For the infinite square well, the probability of finding the particle outside the well is 0.

For other potentials, P (x) will penetrate into the classically forbidden region. Considering the
Schrödinger equation separately in each region, we find different solutions. The finite square well
looks like the infinite square well inside, but the wavefunction decays exponentially outside.

If V (x) is continuous, then ψ(x) and its derivatives must all be continuous, we can use this to
sketch wavefunctions.

7.1 Ladder Operators

Ladder operators allow us to move up and down the ’ladder’ in energies, if

Hψn = Enψn, (15)

then
Ha+ψn = (Enℏω)a+ψn. (16)

7.2 Commutators and Uncertainty

If two operators Â and B̂ commute, they have a common set of eigenfunctions. This means A and
B can be known simultaneously, if we measure A and subsequently B, we get values corresponding
to the same eigenfunction.

If two operators don’t commute, then they don’t share a common set of eigenfunctions and we can
express the eigenfunctions of one operator and a superposition of the eigenfunctions of the other.
Therefore, knowing A does not determine the value of B, only probabilities.

The fundamental commutator is
[x, p̂] = iℏ. (17)
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Some useful identities are
[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ, (18)

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂. (19)

8 The 3-D Schrödinger Equation

We can solve the 3-D Schrödinger equation by seeking solutions that are separable. If

V (x, y, z) = Vx(x) = Vy(y) + Vz(z), (20)

then Schrödinger’s equation is separable in Cartesian coordinates,

ψ(x, y, z) = ψx(x)ψy(y)ψz(z). (21)

If, instead, the potential is spherically symmetric, then Schrödinger’s equation is separable in
spherical polar coordinates, and

ψ = R(r)Y (θ, ϕ). (22)

9 Angular Momentum

The angular momentum operator in Cartesian coordinates is given by

L̂ = −iℏ(r×∇). (23)

Its components don’t commute,
[Lx, Ly] = iℏLz, (24)

and similarly for other combinations of x, y, z. L̂2 does commute with each component.

10 Angular Momentum and Spherical Harmonics

The total angular momentum operator is L̂2, and its eigenfunctions are the spherical harmonics
Ylm(θ, ϕ), which satisfy

L̂2Ylm = l(l + 1)ℏ2Ylm and L̂zYlm = mℏYlm, (25)

with −l ≤ m ≤ l.

The radial probability density is given by

P (r)dr =

∫ 2π

ϕ=0

∫ π

θ=0
R2

nlY
∗
lmYlmr

2 sin θdθdϕdr = R2
nlr

2dr, (26)

where we have used the volume element in spherical polars, and the normalisation of Ylm(θ, ϕ).
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11 Finding the Hydrogen Wavefunction

Rearranging the Schrödinger equation, and substituting eigenvalues, we find the radial equation,
which is identical to the 1-D Schrödinger equation, but with a new effective potential Veff(r) term.

In the Hydrogen atom, we replace the mass m with the reduced mass µ = mpme/(mp + me) to
account for the two particles. Solving this gives an equation for the quantised energies.

11.1 Degeneracy

For a given n, there are n values of l, and 2l + 1 values of m, which have the same energy, so the
level is degenerate.

12 Generalising Angular Momentum

Particles have intrinsic angular momentum, spin, as well as extrinsic orbital angular momentum.

Any vector J is defined to be an angular momentum if its components satisfy

[Jx, Jy] = iℏJz , [Jy, Jz] = iℏJx and [Jz, Jx] = iℏJy, (27)

and commute with J2. J then has all the same properties as L above.

A general angular momentum can have integer or half integer values of j, with mj running up to
±j.

13 Spin

We define Ŝ as an angular momentum spin operator. S2 has eigenvalues s(s + 1)ℏ2, and Sz has
eigenvalues msℏ. They do not have spherical harmonics as eigenfunctions, and their eigenstates are
not functions of spatial coordinates.

Fermions have half integer spin, for electrons s = 1/2, so exists in one of two eigenstates: spin-up,
ms = 1/2, or spin-down, ms = −1/2.

Stern-Gerlach experiment gave evidence for the existence of spin, they took silver atoms which have
a single outer electron in the n = 5, l = 0,m = 0 level. l = 0 means the electron has no orbital
angular momentum and therefore produces no current loop, it should not interact with an external
magnetic field. Instead, the beam was separated into two distinct parts, each due to the electron
being either spin-up or spin-down.
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14 Non-Degenerate Perturbation Theory

If we perturb a system whose unperturbed Hamiltonian, eigenfunctions and energy levels satisfy

H0ψ
0
n = E0

nψ
0
n, (28)

such that the perturbed Hamiltonian is H = H0+H
′, then the corresponding perturbations to the

energy levels are
E1

n = ⟨ψ0
n|H ′|ψ0

n⟩. (29)

15 Degenerate Perturbation Theory

If we have two degenerate states that satisfy

H0ψ
0
a = E0ψ0

a and H0ψ
0
b = E0ψ0

b , (30)

then the eigenfunctions of the perturbed Hamiltonian are

ψ = αψa + βψb, (31)

where the coefficients and the first order approximation to the energy, E1, are given by(
Waa Wab

Wba Wbb

)(
α
β

)
= E1

(
α
β

)
, (32)

whereWij = ⟨ψi|H ′|ψj⟩. If the off-diagonals are equal to 0, then this reduces to the non-degenerate
perturbation theory result.

If the perturbation and the unperturbed Hamiltonian don’t share symmetry, then the degeneracy is
broken. When the perturbation is lifted, the wavefunctions settle down to two ’good’ eigenfunctions.

Good eigenfunctions are eigenfunctions of both the perturbed and unperturbed Hamiltonian, they
share symmetry with the perturbation and diagonalise W .

16 Hydrogen Quantum Numbers and Fine Structure

The solutions to the basic Schrödinger equation for Hydrogen are highly degenerate. To fully
specify the wavefunction ψnlmms , we must define

• n: principle quantum number, n = 1, 2, 3...

• l: total orbital angular momentum quantum number, L2ψ = l(l + 1)ℏ2ψ, l = 0, 1, ..., n− 1

• m: magnetic quantum number, component of orbital angular momentum along the z-axis,
Lzψ = mℏψ, m = −l, ..., l
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• ms: component of spin angular momentum along the z-axis, Szψ = msℏψ, ms = ±1/2.

The energy levels only depend on n, and so are 2n2-fold degenerate.

We can alternatively label the wavefunction ψnljmj
, where

• n: principle quantum number, n = 1, 2, 3...

• l: total orbital angular momentum quantum number, L2ψ = l(l + 1)ℏ2ψ, l = 0, 1, ..., n− 1

• j: total angular momentum quantum number, J2ψ = j(j +1)ℏ2ψ, j = |l− 1/2| or |l+1/2|as
j must be positive

• mj : component of total angular momentum along the z-axis, Jzψ = mjℏψ, m = −j, ..., j

There is a perturbation to the Hamiltonian due to the interaction of the spin and orbit of the particle
proportional to S ·L. Our Hamiltonian therefore has an extra term due to this, the perturbation H ′

does not commute with all of the operators associated with S and L, but does with the operators
of the total angular momentum J = S+L. J and Jz are conserved under the perturbation, so use
H0, L2, S2, J2 and Jz.

Note, two other corrections are needed, the Darwin term resulting from smearing of the electrostatic
interaction over a volume defined by the Compton wavelength, and relativistic corrections to kinetic
energy. These give rise to the fine structure of Hydrogen.
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